Important: Use custom search function to get better results from our thousands of pages

Use " " for compulsory search eg:"electronics seminar" , use -" " for filter something eg: "electronics seminar" -"/tag/" (used for exclude results from tag pages)

Tags: Design, Clap, Activated, Switch, clap activated lamp, clap activated lights, clap activated switch circuit, clap activated remote, clap activated switch kit,
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Design of a Clap Activated Switch
Post: #1


This paper presents the design of a clap activated switch device that will serve well in different phono-controlled applications, providing inexpensive key and at the same time flee from false triggering. This involves the design of various sages consisting of the pickup transducer, low frequency, audio low power and low noise amplifier, timer, bistable and switches. It also consists of special network components to prevent false triggering and ensure desired performance objectives. A decade counter IC serves the bistable function instead of flip-flop, special transistor and edge triggering network for low audio frequency.


The primary purpose of switch is to provide means for connecting two or more terminals in order to permit the flow of current across them, so as to allow for interaction between electrical components, and to easily isolate circuits so as to terminate this Design of a Clap Activated Switch S.OLOKEDE, Seyi STEPHEN45 communication flow when need be. The motivating force behind this design is based on the desire to alleviate the problem faced by the aged and physically challenged persons in trying to control some household appliances. It also takes into considerations the illiterates that may have problems operating some “complex” hand-held Remote Control Units (RCUs) Therefore this paper provides an introductory study on the basic principles involved in utilizing acoustic energy to control switching process. This is achieved by converting the energy generated by the “handclap” into electrical pulse, which is in turn used to drive an electronic circuitry that includes a relay, which in turn switches ON/OFF any appliance connected through it to the main. The device is activated by clapping twice within a set time period that is determined by a time constant (RC) component value in the circuit.

for more details, please visit
Post: #2

.doc  CLAPSWITCH.doc (Size: 50 KB / Downloads: 106)
Here’s a clap switch free from false triggering. To turn on/off any appliance, you just have to clap twice. The circuit changes its output state only when you clap twice within the set time period. Here, you’ve to clap within 3 seconds. The clap sound sensed by condenser microphone is amplified by transistor T1.
The amplified signal provides negative pulse to pin 2 of IC1 and IC2, triggering both the ICs. IC1, commonly used as a timer, is wired here as a monostable multivibrator. Trigging of IC1 causes pin 3 to go high and it remains high for a certain time period depending on the selected values of R7 and C3. This ‘on’ time (T) of IC1 can be calculated using the following relationship: T=1.1R7.C3 seconds where R7 is in ohms and C3 in microfarads On first clap, output pin 3 of IC1 goes high and remains in this standby position for the preset time. Also, LED1 glows for this period. The output of IC1 provides supply voltage to IC2 at its pins 8 and 4. Now IC2 is ready to receive the triggering signal. Resistor R10 and capacitor C7 connected to pin 4 of IC2 prevent false triggering when IC1 provides the supply voltage to IC2 at first clap. On second clap, a negative pulse triggers IC2 and its output pin 3 goes high for a time period depending on R9 and C5. This provides a positive pulse at clock pin 14 of decade counter IC 4017 (IC3). Decade counter IC3 is wired here as bistable. Each pulse applied at clock pin 14 changes the output state at pin 2 (Q1) of IC3 because Q2 is connected to reset pin 15. The high output at pin 2 drives transistor T2 and also energizes relay RL1. LED2 indicates activation of relay RL1 and on/off status of the appliance. A free-wheeling diode (D1) prevents damage of T2 when relay de-energizes
Post: #3

.docx  Clap Switch.docx (Size: 338.69 KB / Downloads: 114)
Clap Switch
The operation is simple. Clap and the lamp turns on. Clap again and it turns off.
The electret microphone picks up the sound of your claps, coughs, and the sound of that book knocked off the table. It produces a small electrical signal which is amplified by the succeeding transistor stage. Two transistors cross connected as a bistable multivibrator change state at each signal. One of these transistors drives a heavier transistor which controls a lamp.
I built my prototype on a cardboard cover from an old notebook. Punched holes using dividers and placed the components down flat. It might look neater if you draw the circuit diagram on to the board before you begin. A photo is included below. The components are from my junk box and I found that it works even if you omit that 4.7 Megohm resistor. Your results may vary.
The transistor types are not critical and any n-p-n silicon transistors should work
A revised version
Based on the comments of the many people who built this circuit successfully, and the few who tried to and failed, the circuit was revised. Two changes, mainly: the filament lamp was replaced by a bunch of LEDs, and the output stage was coupled to the collector instead of the emitter of the bistable.
Input Transducer
The sound of your claps is picked up using an electret microphone. Some people call it by the name "condenser microphone" which usually refers to exhorbitantly priced things intended for the recording studio. If you could buy yours and still have your shirt on your back relax - it's an electret mike all right. Inside it is an electret film - which is the electrical analogue of a magnet - stretched so that it will vibrate in sympathy with any sound falling on it. These vibrations cause the electrical charge on a perforated plate nearby to change, and a field effect transistor converts these into corresponding changes in current.
This microphone has a stage of amplification built in. The power for this built in amplifier is supplied by connecting a resistor to a positive source of voltage, and the changes in current get reflected as changes in voltage across this resistor according to the familiar relation V = I*R. A larger resistor will give you a larger voltage, but then, the current into the device gets reduced which brings down the gain. The value of 5600 ohms (usually abbreviated to 5.6K, and written down in schematics as 5K6) seems to work all right.
A transistor stage, biased near cut-off (that is, almost no current with no signal) amplifies the signal from the microphone. The output of the microphone is coupled to the base of the transistor using an electrolytic capacitor (note: using a better capacitor here will not work). The top of the electret microphone is at a few volts, the base conducts at around half a volt, so the leakage current of the capacitor (all electrolytic capacitors leak at least a little bit) will eventually cause the steady state condition in which the leakage of the capacitor goes into the base terminal of the transistor. So the collector will have Hfe times this leakage, which can usually be ignored.
The first time the microphone output goes positive, however, (because somebody clapped) this change gets coupled to the base entirely due to the action of the capacitor. This causes the current through the transistor to increase, and this increase in current causes the voltage at the collector, which was sitting near the supply voltage, to fall to nearly zero. If you clapped loudly enough, of course.
This is not a high fidelity audio amplifier. Its function is to produce no output for small sounds and large output for (slightly) bigger sounds, so the customary biasing network can be omitted. The 4.7 Megohm resistor in the previous version was as good as an open circuit, and its omission does not affect the operation of the clap switch in any way. Provided, of course, that you use that 10 microfarad electrolytic capacitor.
Two cross connected transistors in a bistable multivibrator arrangement make up a circuit that remembers. You can set it to one of two possible states, and it will stay in that state until the end of time. When one transistor conducts, its collector is near ground, and a resistor from this collector feeds the base of the other. Since this resistor sees ground at the collector end the base at the other end receives no current, so that transistor is off. Since this transistor is off, its collector is near supply potential and a resistor connects from this to the base of the other transistor. Since this resistor sees voltage, it supplies the base with current, ensuring that the transistor remains on. Thus this state is stable. By symmetry, the other state is, too.
Changing state
On a clap, the state of the bistable changes. The output of the amplifier is converted to a sharp pulse by passing it through a (relatively) low valued capacitor, of 0.1 microfarads (100 nanofarads). This is connected through "steering" diodes to the base of the transistor which is conducting. This transistor stops conducting, and the other transistor was not conducting anyway. So at a clap, both transistors become off.
Then, those two capacitors across the base resistors come into action. The capacitor connecting to the base of the transistor which was ON has voltage across it. The capacitor connecting to the base of the transistor which was OFF has no voltage across it.
As the sound of the clap dies away, both bases rise towards the supply voltage. But, due to the difference in the charges of the two capacitors, the base of the transistor which was previously not conducting reaches the magic value of half a volt first, and it gets on, and stays on. Until the next clap.
Two red Light Emitting Diodes have been placed in the two collector circuits so that this circuit can be made to work by itself. If you cover up one LED, and display the other prominently, you have it there - a clap operated light.
Output Stage
In order to have a decent amount of light from this circuit, I propose to use six white LEDs in three groups of two each. Each series connected string of two LEDs is arranged to draw around fifteen milliamperes or so by using a series resistor of 330 ohms. Two LEDs in series will drop about five or six volts, and the remaining battery voltage drop across this resistor determines the current through the LEDs. You can get more brightness from the LEDs by reducing the value to 220 ohms or even 150 ohms, provided you keep within the ratings of the LEDs. Do so at your own risk.
Thus the output stage has to handle around fifty or sixty milliamperes. This will give you fairly long time of claplighting with a PP3 battery. The 100mA filament lamp seems to be somewhat hard to find, and people were using torch bulbs, which run at much higher current, and killing their batteries in a few minutes.
A transistor gets its base driven from the collector of one of the transistors in the bistable. With this connection, due to the base current through it, one red LED in the bistable switches between half bright and full, and the other switches between fully off and on. This is normal.
Because the LEDs do not draw as much current as a filament lamp, the output transistor, too, can be of the common small signal variety. All four could be any small signal n-p-n transistor and the circuit should work. So would it with four p-n-p transistors, provided you switch the polarity of every (polarised) component

Marked Categories : claps, simple clap switch on off, design calculation for clap activated switch, introduction on design and construction of a clap switch, sound activated switch using 55 ic timer report, clap operated switch, how to calculate the db required to activate a clap switch, design and construction of clap activated switch, free download ppt for detection of mobile malware in wild, abstract for clap switch with ic4017, difference between clap activated remote and clap switch, clap activated switch, design of clap activated switch, working principle of clap switch, low power battery clap twice switch on off led, clap switch relay images, clap controlled appliannce,

Quick Reply
Type your reply to this message here.

Image Verification
Image Verification
(case insensitive)
Please enter the text within the image on the left in to the text box below. This process is used to prevent automated posts.

Possibly Related Threads...
Thread: Author Replies: Views: Last Post
  aeration tank design calculations ppt Guest 0 0 Today 06:02 PM
Last Post: Guest
  design data of pedal powered refrigerator Guest 0 0 Yesterday 05:18 PM
Last Post: Guest
  design and fabrication of a mini hydraulic press machine Guest 1 0 21-04-2017 03:09 PM
Last Post: jaseela123
  Vancouver Web Design Seo Guest 1 282 21-04-2017 12:38 PM
Last Post: jaseela123
  to design an appropriate logic gate combination for a given truth table investigatory Guest 1 297 20-04-2017 03:01 PM
Last Post: jaseela123
  4 bit baugh wooley multiplier verilog code design Guest 3 2,232 20-04-2017 02:34 PM
Last Post: jaseela123
  DESIGN OF TESLA TURBINE seminar class 5 35,064 20-04-2017 01:37 PM
Last Post: Guest
  Vancouver Web Design Seo Guest 1 212 20-04-2017 11:52 AM
Last Post: jaseela123
  Vancouver Web Design Seo Guest 1 157 20-04-2017 11:51 AM
Last Post: jaseela123
  design and fabrication of pneumatic forging machine project full report pdf download Guest 0 0 18-04-2017 12:00 AM
Last Post: Guest
This Page May Contain What is Design of a Clap Activated Switch And Latest Information/News About Design of a Clap Activated Switch,If Not ...Use Search to get more info about Design of a Clap Activated Switch Or Ask Here